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1 Introduction

The main objective of this project is the development of accurate physical
models and efficient numerical algorithms suitable for diffraction tomographic
reconstruction of the compressibility, acoustic attenuation, and mass density
of the prostate through a multielement transurethral ultrasound transceiver.
Unlike conventional ultrasound imaging, which is non-quantitative and af-
fected by speckle artifacts, three-dimensional tomographic solution of the
inverse acoustic scattering problem has the potential to quantitatively recon-
struct the detailed acoustic properties of the prostate from measurements of
the scattered radiation field. However, numerous challenges must be con-
fronted before such a proposition becomes feasible in real-world applications.
It is well-known that problems in inverse scattering, in addition to being
mathematically complex and computationally intensive, are also particularly
ill-posed and ill-conditioned.[1, 2]

In the weak scattering limit, such problems are tractable within the so-
called Born approximation, in which the pressure field internal to the scat-
terer is approximated by the pressure field of the incident wave. This approxi-
mation assumes negligible loss of the incident field energy through scattering,
which is effectively the single scattering limit where y, -* 0, and A/L >> 1.
The Born approximation is clearly inappropriate for imaging an object such
as the prostate which may not be a weak scatterer at all, and for which
multiple scattering must be taken into account. For this reason, we have
taken an approach involving solution of the full multiple-scattering form of
the nonuniform wave equation:

11 2p 102py•(rt)+ .('P(r,t)Vp) -2V91.V, (1)2P c2 Ort2 _C2 t2

recast in the form of a Lippmann-Schwinger integral equation:

p.(r) = pinc(r) + j (k2'ypWGW(rlro) + ypV 0p• • VoG,(rlro)) dr, (2)

as discussed in Morse and Ingard.[3] Our initial implementation has only
considered variations in compressibility in the scatterer, neglecting the second
term in Eq. 2; incorporation of density inhomogeneities in the forward model
will constitute a significant component of work in the upcoming year.

The characteristic physical scales of the problem are: L - 5 cm, c
2.5 x 105 cm/s, v - 1 - 5 x 106 s-', A - 0.05 - 0.25 cm. Given that
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cell sizes must be on the order of A/4, for a realistic geometry we expect
grid dimensions of - 100 - 500 pixels in each dimension, corresponding to
Np - 104 - 2.5 x 105 in 2D and Np - 106 - 1.25 x 108 in 3D. Furthermore,
iterative nonlinear inversion methods may require many evaluations of the
forward model to reach convergence. For these reasons, development of highly
efficient methods for computation of the forward model is critical to the
success of the proposed work. A significant component of the work described
in the following report has centered on theoretical analysis of the scattering
equation and computational implementation and validation of the forward
model in both 2D and 3D. Our model is capable of solving the full scattering
problem on a desktop computer (2 GHz PowerMac G5) on a 1024 x 1024 grid
in 2D (see Fig. 1) or a 100 x 100 x 100 grid in 3D in approximately 30 minutes
of runtime, and has been structured in a way that is highly amenable to
parallelization in anticipation of work to be done in the upcoming months.

2 Theoretical Foundation

2.1 The Helmholtz Problem

We begin by briefly reviewing the basic Helmholtz problem:

(A ± •gn(x)) V)(x) = 0 where x e Rd: d E {2, 3}, (3)

where the following limit holds uniformly in all directions:

lim (IxIl-do'(x) - iko) 0, (4)

Here, 4)(x) represents the total pressure field. n(x) is the refractive index
is defined by n(x) = c2/c 2(x), where co and c(x) are sound velocities in the
ambient medium and the object, respectively. A typical scattering geometry
is shown in Fig. 2.

In the case of scattering by inhomogeneities, it is customary to express
the Helmholtz problem in terms of the of relative change in the refractive
index. Therefore, we define a quantity -y(x) = 1 - n(x) = 1 - r0o/K(x), where
K is the compressibility. With this definition, and a homogeneous background
medium, we observe that ,-y(x) has compact support on the inhomogeneous
scatterer which is to be recovered. In a non-attenuating medium, -y(x) is a
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pure real number, while an attenuating medium has a complex value: 'y(x)

T(x) + iyi(x)
The formal solution of the Helmholtz problem may be expressed as a

Lippmann-Schwinger integral equation:

S= oinc(x) - k2 j dx'G (°)(kolx - x'I)'y(x')V)(x'), (5)

where Q E R d is a volume bounding the scattering object.[1, 2] The incident
scattered wave is represented by a plane wave: 7pinc(x) = eikox, where the
wavenumber k0 = Iko0 = 27r/A and A is the wavelength. O(x) represents
the total field, comprised of incident and scattered components: O(x)
0iflC(x) + Osc(x). G(°) (xlx,) is the free space Green's function:

G(°)(xlx,) 4-H•(koIx - x, ) in 1R2, (6)

andGl(xxx) 
- Ix- xl-1eikolx-xsl in R3. (7)

47

In all the above expressions, x is the field or observation point and x, is
the source location. Equation 5 is, in principle, valid for all x e R d, being
applicable both within and outside Q. The scattered field, 0`(x), at the
detector position XD can thus be obtained:

ic(xD) -ko j dx'G(°)(ko0XD - x'I)Y(X')¢)(x'). (8)

2.2 Discretization of the Lippmann-Schwinger Forward
Problem

Discretization of the integral equation of scattering (Eq. 5) was performed on
a regular square lattice, though preliminary progress toward an implemen-
tation on a hexagonal lattice, which offers the benefit of increased packing
density for the interpolation of the Green's functions (discussed below), has
also been made. Interpolation of the Green's function over lattice-centered
circular elements was first introduced by Richmond for the 2D problem,[10]
(see Fig. 3) and has been extended to spherical elements in 3D in ths work.
For circular or spherical regions, the Green's function can be analyticaly in-
tegrated to accurately approximate it over the lattice, significantly speeding
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up the initial computation of the discrete Green's function matrix, the accu-
racy of our integration scheme has been checked against full, computationally
expensive, numerical quadrature of G over the individual grid cells. In addi-
tion, the Richmond-type discretization makes the discrete forward problem
Nystrbm-like,[11] which allows interpolating the nodal values of the solution
to arbitrary points in the lattice thus essentially resulting in a continuous
solution.

For simplicity, the following discussion considers the 2D case except where
there is a significant difference in 3D. Given a square domain, Q, of side
L which contains the scatterer, and Np = Nd discrete cells, Eq. 5 can be
approximated for any gridpoint, (Xm, Yn), as:

N N

)(x., y.) ?fC(xm, yn) - k' E E(-y)(xpyq) dx'G(O)(ko0x-x'I), (9)
p=1 q=1 IF

In Eq. (3), a = L/N is the lattice spacing, (Xm, Yn) = a(m, n) is the coordi-
nate of a single gridpoint, (70¢)(Xp, yq) = y(Xp, yq) (Xp, yq) and the integra-
tion domain, F, is a single cell (Xm, y,,) ( (Xm+l, Yn+i). Using the Richmond
approach, F is approximated as a circle of area equal to the correspond-
ing cell in 2D: r0 = (1/rr)1/ 2 : RR2, and as a sphere of volume equal to the

corresponding cell in 3D: r0 = (3/47r) 1 /3 : R3.
In two dimensions, the integral in Eq. 9 can be reduced to

7koro° j (kor°)H(1l)(kox) x x'fidx'G ) ,(kox - x'I) 2 0 I 1 (10)
xIF{ 2 • H1l)(kor0) + 1 x x

in 2D and to
f {i(koro)2jl (koro)h(')(kox) x x'

dx'G(°)(kolx - x'j) - 1--eikor°(1-korooro) x0= x' (11)

in 3D, where Jn(z), I,,m)(z), jn(z), and hn(m)(z) are the standard cylindrical
and spherical Bessel and Hankel functions.[12]

2.2.1 Evaluation of the 3D Green's Function Matrix

The task here is to evaluate the integral

1 = -kj G(°)(ko0x - x'l)dx' (12)
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of the free space Green's function over a spherical resolution element, F' =

B(ro) with radius r0 , which separates into two cases: (1) jxj > Ix'j, and (2)
xj-= Ix'l that are considered separately below.

Off-Diagonal Terms (jxj > Ix'l : x € F'): The multipole expansion of
G(°) gives

00 n

G(0)(koIx - x'I) = ik0 E E a.nmh(1)(kox)Pn7(sin0)e-"0
n=O m=-n (13)

• ! r • / imOl

j.(kox')Pn7 (sin 0')e e ,

where x = (r, 0, ¢) and x' = (r', 0', 0') are the coordinates of the field
and the source point, respectively, and Pn(x) is the associated Legendre
polynomial.[12] The x'-integration over the ball yields

j (kox')Pnm(sin 0')e-im°'dx'= 47r (sin(koro) - (koro) cos(koro)), (14)IF/03

using f dzz 2jo(z) = sin(z) - zcos(z). From Eqs. 13 and 14, the off-diagonal

elements of the Green's function matrix, 9.o) are found to be:

g(0) - -ih~l) (kox) (sin(koro) - (koro) cos(koro) (mn~mon 0 2j (15)

- i(koro)2j (koro)h(l)(kox).

Diagonal Terms (]xj = Ix'I : x e F'): In order to calculate the diago-
nal elements,it is necessary to divide a resolution element into two separate
regions and consider the integration over each of the regions separately. The
geometry is shown in Fig. 4. In region I, we let p = Ix - fl, where f is the
center of the resolution element nearest to the field point x. The calculation
for this region is identical to that for the off-diagonal terms computed above,
yielding:

-k 2GG(° - -i1h'1)(kop) (sin(kop) - (kop) cos(kop))

- -i(kop) 2jl (kop)h 1 ) (kop). (16)

In the annular region II, the integral is similar, noting that the spherical
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Hankel function may be written as h~l)(z) = jo(z) + iyo(z),

koro

-'GOr = -ijo(kop) drr2h$l)(r)J kop (17)

= -ijo(kop) drr2jo(r) + i] drr 2yo(r).
kOp fkop

This equation is evaluated using the integrals

J dzz 2jo(z) = sin(z) - zcos(z), (18)

and J dzz 2yo(z) - (cos(z) + zCos(z) (19)

giving
g') = 1 eikor. (1 - ikoro). (20)

2.3 Solution of the Lippmann-Schwinger Equation us-
ing the CGFFT Method

Here we discuss the conjugate gradient fast Fourier transform (CGFFT)
method as applied to the solution of Eq. 9. If we attempt to solve this dis-
cretized Lippmann-Schwinger equation by direct matrix inversion, we have:

0 = (I - g(o)A)-1 inc, (21)

where A is a Np x Np matrix having the values of 3' along the diagonal:
Aii = -yi. For 'y having Np = Nd elements, the operation count is O(N3 d),
making direct inversion impractical for any reasonable sized scatterer. How-
ever, since the summation in Eq. 9 is in fact a d-dimensional convolution
it may be evaluated by fast Fourier transform (FFT) in O(Nd log Nd) op-

erations, leading to a tremendous speedup for non-trivial grid sizes.[9] This
allows us to formulate the forward model as:

S= Oinc _ g(O) * (y'¢), (22)

which becomes, after Fourier transformation,

f O= { _ : { } .F{(y'b)}, (23)
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so
= nc pne - {._{gy•(0)} r"{(.IY )}1 } , (24)

We solve the resulting large linear system iteratively using the linear con-
jugate gradient approach.[4, 5, 6, 7, 8] The Lippmann-Schwinger operator
is:

LO = • •-(). (O) . (25)

The adjoint Lippmann-Schwinger operator, LA, can be calculated from the
Hilbert space relation:

(L4, 0) = (V), LAO), (26)

where the inner product, (0, 0) is

(V),0) J' P(x)ct(x)dx, (27)

Ot denoting the complex conjugate of 0. Evaluating the inner product ex-

pression and noting that G(°)(xlx') = G(°)(x'lx) yields the desired adjoint
operator, namely

(LA0)(x) = O(x) - -y(x) j G(O)t(kolx - x'I)O(x')dx'. (28)

An outline of our CGFFT routine follows:

"* Initial step:
R0 = L4o - 0"i'

P1 = -LAR 0

" iterative steps ( k=1,2,..):

k (4 inc, LPk> _ IILARk_ 112

iiLPkll2 - iiLPkll2

Ok = /k-, + CkPk

Rk LVbk - 4/i"C = Rk-1 + akLPk

JILARk 12
Zk= ILA PkI 12

Pk+1 =/fkPk - LARk
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The residual norm
11Rk 11 [[LVk - V/incll

110in~lt IN) nc 11
decreases monotonically as the algorithm progresses, and is an useful indica-
tion of the average error in the solution after k steps.

2.4 Analytical Solutions in 2D and 3D

In order to verify the correctness of the CGFFT solution, closed-form bench-

mark solutions were computed for an infinitely long, homogeneous circular
cylinder of radius r0 in 2D, and for a homogeneous sphere of radius r0 in 3D.

2.4.1 Scattering From an Infinite, Homogeneous Circular Cylin-
der

In two space dimensions, the plane wave incident field can be rewritten using
the Jacobi-Anger expansion:

00

/inc(r o) Y , inn(kr) cos(nO). (29)
-=00

The internal field is then given by

00

oint (r, 0) b , bmJm(kor) cos(mO), (30)
m=O

and the scattered field is:
00

4S8 (r, 0) = a aH H)(kor) cos(mO). (31)
m=O

We let k0 be the wavenumber in the homogeneous medium, k be the wavenum-
ber in the cylinder, and define the impedance as Z = k/ko. The coefficients
am and bm are then obtained from the continuity of pressure and radial ve-
locities across the surface of the disk, leading to the following expressions:

am = fm (Jm(koro)Jm('kro)Z - Jm(kro)Jm(koro)) (32)

bm = fr, (Jm(koro)f(l)(koro) - H(n)(koro)jm(koro))
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where

- 1/Ao rnO (0
fm = 12i"/A, 0 O (33a)

Am = .lm(kro)Ht(ml)(koro) - H,)(koro)Jm(kro)Z (33b)

Jm(z) = Jm+i(Z) - Jm-I(Z) (33c)

Hm(z) = Hm+i(Z) - Hm-l(Z). (33d)

Here, H()=(z) = J(z) +iYm(z) is the first kind Hankel function, Jm(z) is the
first kind Bessel function, and Ym(z) is the second kind Bessel (or Neumann)
function.

2.4.2 Scattering From a Homogeneous Sphere

The 3D case closely parallels the 2D case discussed above. In three dimen-
sions, the Jacobi-Anger expansion is:

00

¢jinc(r" 4) = E i(2n + 1)jn(kr)Pn(sin4), (34)
n=0

where the azimuthal angle, 0, is measured with respect to the rO-plane. The
internal field is then:

00

oint (r,0) =E brjm(kor)P..(sin 4), (35)
m=0

and the scattered field is:

ysc(r, 4) = ) amj (1)(kor)Pm(sin 0). (36)
m=0

Again, the coefficients are determined by requiring continuity of pressure and
radial velocity at the interface, giving:

am = fm (jm(koro)jm(kro)Z - jm(kro)j3m(koro))
bm = fm (jm(koro)h(1)(koro)- Mi)(koro)'m(koro)) (37)
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where

(1/A 0  0=0
f.=j2im(2m + 1)/Am m 0 (38a)

Azm = jm(kro)h)(koro) - hQ)(koro)jm(kro)Z (38b)
1

jm(Z) = 2m-1 ((in + 1)jm+i(z) - mjm-l(z)) (38c)

hm(z) - 2m 1 ±1 ((m + 1)hm.+(z) - •rn-h 1 (z)). (38d)

Here, hQ)(z) = jm(z) + infl(z) is the first kind spherical Hankel function,

jm(Z) = 'F/(2Z)Jm+x/ 2 (Z) is the first kind spherical Bessel function, and

nm(z) = 7r/(2z)y,+1/2(Z) is the second kind spherical Bessel (or Neumann)
function.

2.5 Solution of the Inverse Scattering Problem

Our ultimate objective is the efficient and accurate reconstruction of the
unknown object based on the measured scattered field (amplitude and/or
phase) at a number of detector locations and incident frequencies. Due to
the incomplete nature of the measured data and the effect of measurement
noise, solution of such inverse problems relies on the use of ancillary prior
information, typically incorporated as an ad hoc regularizing term in P which
mediates the delicate balance between the agreement between the simulated
and measured scattered fields, 0 and Vobs, respectively, and the "reasonable-
ness" of the reconstructed object. A general expression for the objective
function is

4)(-) = fit(-y) + cv40(cD ), (39)

where R. is an arbitrary regularizing functional which represents the concor-
dance between the reconstructed object and our prior expectations and a is
a regularizing parameter which represents the weight assigned to our prior,
V, relative to the fit quality, V1f.t Commonly, Vfit is chosen to be the X2

statistic and V) to be the square of the object's norm:

4)(-) =X + a11•11
IW - _ obs) T -l(V _ pobs) + ±, 117y 2 , (40)

2
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where E is the covariance matrix of the measured data. For discrete obser-
vations with uncorrelated noise, 4(-y) becomes:

.( _ ) N ob ' 0 m -- 0 0 'os 2 N

E -T-!t -M + a , (41)
m=l n=!

where am is the standard deviation of the noise for the m-th detector. In

general, the objective function is a complicated nonlinear equation which

may have many local minima, the minimization of which should ideally lead
to a reconstruted object as close as possible to the true object.

As pointed out in the introduction, a primary concern is the efficient
computation of the functional (Frech6t) derivatives, Vy 1, of the objective
function, (, with respect to the object to be reconstructed, 7. Convention-
ally, this gradient would be evaluated by straightforward differentiation:

d4)(-)_=N" Cm- omo dom' 1 + (, 1 ma _- omob

Emam
n=p am dd__._ am dy a

1J
n=1l -i dl

2 uibbl' )t---i + Jt ( ma )0 S) (42)

m=l ~
N,

+ a L [( tni +-- ni

n=1
Nob,, 1 

b 
os

m=l

Obviously, evaluation of the full Jacobian matrix, J, at every iteration
involves significant computational expense and should be avoided. This can
be accomplished by the computation of the gradient by the method of adjoint
fields, [14, 15, 16] which is briefly described here. From the gradient expression
above, the total variation 54 in 4 for a variation 6-y in -y is given by:

R)=91e - pbst (43)
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where the residual Rm is defined as V),, - Vo"' and 65?/•)m is the variation in
V•m. Now, from the Lippmann-Schwinger equation:

S=g(0)(xMIX) * (W/)(X), (44)

taken over the computational grid Q. Then

67P.- =(O)(xmlx) * ('ykP + 06-Y). (45)

Substituting Eq. 45 for 60m into Eq. 43 gives:

54 = 9qe {¢(o)* (-y6 ) + 06-Y)} (46)

0(o) in Eq. 46 is given by

N~b,
0(0) = R,*G(O)(xmIx) (47)

m=1

which is a function on the computational grid. Let 0(0) be considered as the
incident field in the Lipmann-Schwinger equation. Then:

O(x) = 0(°) (x) + (G(°), YO), (48)

where q is the total field corresponding to the incident field 0(0). Equation 48
then solves 0 as:

0 = [I - g(°)Ay]-1O(°). (49)

But from the Lipmann-Schwinger equation, we also have:

0 = [I - G(°)A,]-p1 , (50)

which leads to, after some algebra,

60 = Re fi dx(o(x)V)(x))5y(x)

- Refi dx(V-y))6'(x),

from which
V,4(x) = Re(b(x)O(x)), x C Q (51)
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3 Numerical Results

Here we compare the results of our CGFFT solutions of the Lippmann-
Schwinger equation for both Vint(x) and ,sc(x) with the results of Born
approximation calculations in 2D and with the corresponding exact analyt-
ical expressions derived in the previous section in both 2D and 3D. We also
demonstrate simulations for scattering from a square object in 2D for vari-
ous incidence angles. Finally, we present preliminary results of performance
profiling and discuss the significance for the inverse problem.

3.1 Comparison with Born Approximation and Exact
Results

Figure 5 shows results for the absolute magnitude of the scattered field, along
with the real and imaginary components, from an infinite circular cylinder
in 2D for two different parameter regimes. Born approximation results are
shown by the blue dots, the exact calculation by red dots, and the CGFFT
computation by black circles. Plots on the left side of the figure are for a
parameter regime well within the realm of applicability for the Born approxi-
mation, as is evidenced by the extremely high degree of concordance between
all three computations. Where any discrepancy at all is discernible, it is the
Born data which deviate slightly from the exact and CGFFT results which
are essentially indistinguishable. The right half of the figure presents a much
more challenging test case in a parameter regime where the Born approxi-
mation is clearly invalid. Here, the plots confirm our expectations; the Born
data deviate dramatically from the exact solution. However, as before, the
results of the CGFFT solution are virtually identical to the exact values for
the scattered field. In Fig. 6, we show similar results for scattering into a
ring of detectors oriented perpendicular to the rO-plane by a spherical ob-
jects. As before, the exact and CGFFT computations agree perfectly in the
Born limit. In the non-Born regime, we begin to observe noticeable devia-
tions between the exact and CGFFT solutions; however, as we have verified
with numerical experimentation, these deviations stem from the necessarily
much coarser discretization of the object in 3D. Despite these small discrep-
ancies, it is clear that the CGFFT method is capturing the essential physics
of scattering in the 3D case as well as in 2D.

To more accurately quantify the level of accuracy we can expect from

our CGFFT algorithm, we present a comparison of ,¢int between CGFFT
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and the exact solution for the infinite cylinder and sphere in Fig. 6. For the
circle, computed on a 512 x 512 lattice, we find essentially perfect agreement
between the two, with a maximum discrepancy of less than 0.1 percent and an
average deviation of less than 0.02 percent. Again, due to the more prominent
discretization effects (both the circular and spherical objects were smoothed
with a 0.5 pixel Gaussian blur filter to reduce scattering artifacts arising from
pixelation at the object boundary) arising from coarser grid size in the 3D
case, the error is enhanced relative to the circular object. Despite that fact,
the absolute value is bounded at less than 1 percent, and averages less than
0.4 percent. In addition, the exact and CGFFT internal fields are clearly
qualitatively quite similar. We demonstrate the ability to simulate more
complex objects in Fig. 8, which demonstrates changes in both the internal
and scattered fields with rotation of the angle of the incident radiation, as
would be expected for an anisotropic object.

3.2 Performance Profiling

In order to assess the performance of our forward model and identify the
presence of performance bottlenecks, we have investigated timing behavior
in a number of cases. In Fig. 9, we present the dependence of execution
time for fixed 'y and A at various lattice sizes. Plotting total execution time
against Np, the number of gridpoints, reveals behavior consistent with the
Np log Np expected for an algorithm which is dominated by the cost of per-
forming forward and inverse FFTs, with a few notable discrepancies. The
clear appearance of outlier data points with substantially elevated execution
time is connected with FFTs on data sets which have a large prime factor;
this is a well known effect in FFT optimization and emphasizes both that our
algorithm is FFT-performance limited and that it is of great importance to
select grid sizes with small prime factors. Another interesting outlier is the
significant performance penalty associated with the 128 x 128 FFT, which
is 50% slower than would be expected from the performance curve. In this

case, it appears that memory access collisions in the fast cache memory are
causing an anomalous slowdown.

Two additional effects are observed to have a significant impact on per-
formance, both relating to the convergence rate of the conjugate gradient
algorithm and understandable as arising from progressively greater devia-
tion from the Born approximation which is used as a starting point in our
conjugate gradient algorithm. The first is seen with increasing -y, which cor-
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responds to progressively stronger scattering from inhomogeneities with re-
fractive properties that differ more from the background medium. Figure 10
shows a quadratic dependence on computation time with increasing values
of -y. Similarly, in the second case of decreasing wavelength, A, we expect
to see increases in computation time as the spatial scale of structure in the
internal field increases. Figure 11 plots the A-dependence for three different
2D lattice sizes, showing consistent power law behavior, with execution time
varying approximately as 1/Al 2 .

4 Key Research Accomplishments

"* Complete theoretical analysis of problem formulation.

"• Rapid adjoint computation of gradient terms validated against finite
difference results.

" Implementation of efficient CGFFT algorithm for 2D and 3D forward
modeling.

" Development of approximate and exact analytical solutions in 2D and
3D and validation of CGFFT algorithm against them.

" Approximate expression for Green's function validated against result
of full numerical quadrature.

" Implementation of nonlinear conjugate gradient method for solution of
inverse problem in 2D and 3D complete.

" Initial investigation of various forms of regularizing functional and var-
ious approaches to optimizing the convergence of minimization of the
objective function.

5 Reportable Outcomes

" Abstract and oral presentation at the 16th Annual UCAIR Symposium,
Park City UT, October 2004.

16



* Abstract submitted to 2005 Fully Three-Dimensional Image Recon-
struction Meeting in Radiology and Nuclear Medicine, Salt Lake City
UT, July 2005.

* Abstract submitted to Applied Inverse Problems 2005, Cirencester UK,
July 2005.

6 Conclusions and Future Work

From the discussion above, it is apparent that a sufficiently accurate rep-
resentation of the prostate will require a resolution for which the compu-
tational burden will exceed reasonable limits for a single processor system.
Fortunately, much of the CGFFT computation is readily parallelized to take
advantage of multiprocessor hardware and/or the high-performance comput-
ing cluster systems that are rapidly growing in popularity and availability.
Nevertheless, while such approaches are likely to be relevant to this work,
it remains critical to investigate all avenues to improving the intrinsic algo-

rithm performance before resorting to brute force. For the upcoming year,
we will work in a number of areas:

6.1 Improving Forward Model Performance

"* preconditioning strategies for acceleration of conjugate gradient con-
vergence

"* implementation of the Non-Uniform FFT to enable the use of unevenly
spaced grids

"* predictor-corrector methods for minimizing evaluations of full forward
model

"* parallelization of forward model algorithm and testing on cluster system

"* extension of theory to accommodate point source incident waves and
transurethral geometry

"* extension of theory and model to incorporate mass density terms and
attenuation
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6.2 The Inverse Problem

We have implemented and performed preliminary tests on the adjoint gra-
dient inversion algorithm in both 2D and 3D, demonstrating the ability to
reconstruct simple geometries in fairly low-resolution cases. However, there
is much improvement to be made in the inversion algorithm. Among the
strategies which we intend to employ over the next year are:

"* investigation of alternative and/or hybrid minimization strategies such
as simulated annealing and genetic algorithms to be used in conjunction
with nonlinear conjugate gradient methods to maximize convergence
rate.

"* study of different regularizing functionals including total variation,
maximum entropy, laplacian, and others and investigation of their im-
pact on inverse problem convergence properties.

"* analytical and numerical solution of the variational problem in 3D.

"* parallelization of inversion algorithm

"* development of a realistic prostate phantom using MRI and conven-
tional ultrasound data in conjunction with anatomic information
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Figure 1: Internal field amplitude computed for a 1024 x 1024 circular scat-
terer object with -y = 0.1 and A/L = 1/28 for a single plane wave incident
along the x-axis.
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Figure 2: Schematic illustration of typical geometry of an inhomogeneity
scattering problem. An incident plane wave traveling along the x-axis im-
pinges on an object embedded in the homogeneous background medium,
which is bounded by the problem domain, Q2. Outgoing scattered waves
travel in all directions from the object, and are measured at detector posi-
tions arrayed outside Q.
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Figure 3: Schematic illustration of the discrete square lattice in 2D. The
circle (extended to a sphere in 3D) of radius ro, represents the region over
which y is considered homogeneous and the Green's function is analytically
integrated. The radius shown is smaller than the actual radius for clarity;
the actual value of r0 corresponds to an area-preserving integration. L is the
physical size of the domain, Q, with a lattice spacing of a = L/N. Element
centers are nodes for the basis functions in a Galerkin-type projection.
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Figure 4: Illustration of the geometry used in calculating the diagonal ele-
ments of the Green's function matrix.
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Figure 5: Comparison of 'b8c for CGFFT (black circles), exact solution (red
dots), and the Born approximation (blue dots) for scattering from an infinite
cylinder, represented on a 128 x 128 grid. The upper panels plot 10,,I, the
middle plot 91e{'f/•,}, and the bottom panels plot 3m{%V,}. Panels on the
left are for L = 14 cm, A = 28 cm, and ' = 0.01, while panels on the right
are for L = 14 cm, A = 3.5 cm, and y = 0.3.
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Figure 6: Comparison of V),, for CGFFT (black circles), exact solution (red
dots), and the Born approximation (blue dots) for scattering from a sphere,
represented on a 32 x 32 x 32 grid. The upper panels plot IV/,,I, the middle
plot 9ie{'Ib0,}, and the bottom panels plot 2m{'•/•}. Panels on the left are
for L = 14 cm, A = 28 cm, and -y = 0.01, while panels on the right are for
L = 14 cm, A = 3.5 cm, and y = 0.3.
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Figure 7: Comparison of Oit for CGFFT and the exact solution for scattering
from an infinite cylinder, represented on a 512 x 512 grid in the left panels
and from a sphere, represented on a a 64 x 64 x 64 grid in the right panels.
The upper panels plot Ibirtl from the CGFFT calculations, the middle plot
10jtj for the exact solution, and the bottom panels plot the relative error,

(- kbintexD/k ntexL In both cases, the forward model was run with
L = 14 cm, A = 7 cm, and -y = 0.3.
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Figure 8: Internal (upper panels) and scattered field (lower panels) ampli-
tudes computed for a 128 x 128 square object with 2ý = 0.3 and A/L = 1/2

for three plane waves having incidence angles of 0, 7r/8, and 7r/4.



Forward model performance: N dependence
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Figure 9: Scaling of forward model execution time with number of gridpoints
in the scattering object. While some expected deviation is seen for smaller
sizes, the overall trend can be seen to be dominated by the Np log Np contri-
bution from the FFT. Furthermore, the outlier points occur for FFT lengths
whose greatest prime factor is T e {13, 17, 19, 23, 29, 31}, leading to well-
known inefficiencies in FFT implementations, and for an FFT length of 128,
which presumably causes cache collisions in the 2D case presented here.
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Figure 10: Scaling of normalized forward model execution time, tnorm

tX/Np log Np, with -y, demonstrating a quadratic dependence of algorithm
convergence with increasing deviation from Born-regime scattering.



Forward model performance: X dependence
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Figure 11: Scaling of normalized forward model execution time, t norm =

t,1/Np log Np, with A for three values of N : {64, 80, 96}. Execution time
is shown to cibey a power law behavior, independent of Np. Regression to
the linear portion of the curves leads to a power-law relation of the form
tnorm OC 1/A 1 2 .


